4.7 Article

Assessment of nitrogen losses through nitrous oxide from abattoir wastewater-irrigated soils

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 23, 期 22, 页码 22633-22646

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-016-7438-y

关键词

Abattoir; Wastewater; Irrigation; Nitrous oxide; Emission; Greenhouse gas and global warming

资金

  1. University of South Australia
  2. CRC for Contamination Assessment and Remediation of the Environment

向作者/读者索取更多资源

The land disposal of waste and wastewater is a major source of N2O emission. This is due to the presence of high concentrations of nitrogen (N) and carbon in the waste. Abattoir wastewater contains 186 mg/L of N and 30.4 mg/L of P. The equivalent of 3 kg of abattoir wastewater-irrigated soil was sieved and taken in a 4-L plastic container. Abattoir wastewater was used for irrigating the plants at the rates of 50 and 100 % field capacity (FC). Four crop species were used with no crop serving as a control. Nitrous oxide emission was monitored using a closed chamber technique. The chamber was placed inside the plastic container, and N2O emission was measured for 7 days after the planting. A syringe and pre-evacuated vial were used for collecting the gas samples; a fresh and clean syringe was used each time to avoid cross-contamination. The collected gas samples were injected into a gas chromatography device immediately after each sampling to analyse the concentration of N2O from different treatments. The overall N2O emission was compared for all the crops under two different abattoir wastewater treatment rates (50 and 100 % FC). Under 100 % FC (wastewater irrigation), among the four species grown in the abattoir wastewater-irrigated soil, Medicago sativa (23 mg/pot), Sinapis alba (21 mg/pot), Zea mays (20 mg/pot) and Helianthus annuus (20 mg/pot) showed higher N2O emission compared to the 50 % treatments-M. sativa (17 mg/pot), S. alba (17 mg/pot), Z. mays (18 mg/pot) and H. annuus (18 mg/pot). Similarly, pots with plants have shown 15 % less emission than the pots without plants. Similar trends of N2O emission flux were observed between the irrigation period (4-week period) for 50 % FC and 100 % FC. Under the 100 % FC loading rate treatments, the highest N2O emission was in the following order: week 1 > week 4 > week 3 > week 2. On the other hand, under the 50 % FC loading rate treatments, the highest N2O emission was recorded in the first few weeks and in the following order: week 1 > week 2 > week 3 > week > 4. Since N2O is a greenhouse gas with high global warming potential, its emission from wastewater irrigation is likely to impact global climate change. Therefore, it is important to examine the effects of abattoir wastewater irrigation on soil for N2O emission potential.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据