4.7 Article

Requirements for Making Thick Junctions of Organic Solar Cells based on Nonfullerene Acceptors

期刊

SOLAR RRL
卷 5, 期 5, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/solr.202100018

关键词

charge carrier mobilities; doping; nonfullerene acceptors; organic photovoltaics; recombination

资金

  1. Academy of Finland [326000]
  2. Welsh Government's Ser Cymru II Program through the European Regional Development Fund
  3. Welsh European Funding Office
  4. UKRI EPSRC Doctoral Training Program studentships
  5. Swansea University Strategic Initiative in Sustainable Advanced Materials
  6. Academy of Finland (AKA) [326000, 326000] Funding Source: Academy of Finland (AKA)

向作者/读者索取更多资源

To produce organic bulk-heterojunction solar cells with thick active layers and high efficiencies based on nonfullerene acceptors, it is important to consider factors such as charge carrier mobility, unintentional doping concentrations, and bimolecular recombination prefactor.
Organic bulk-heterojunction solar cells based on the newly developed nonfullerene electron acceptors have the potential for very low-cost energy production. However, to enable large-scale production with common printing techniques, the active layer thicknesses need to be increased by up to an order of magnitude, which is currently not possible without significant loss in performance. Herein, the requirements for making nonfullerene acceptor (NFA)-based solar cells with thick active layers and high efficiencies are clarified. The charge carrier mobility, unintentional doping concentrations, and bimolecular recombination prefactor in the model high-efficiency system PM6 (Poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b ']dithiophene))-alt-(5,5-(1 ',3 '-di-2-thienyl-5 ',7 '-bis(2-ethylhexyl)benzo[1 ',2 '-c:4 ',5 '-c ']dithiophene-4,8-dione)]):Y6 (2,2 '-((2Z,2 ' Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2 '',3 '':4 ',5 ']thieno[2 ',3 ':4,5]pyrrolo[3,2-g]thieno[2 ',3 ':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) are determined. The results are implemented in a combined electro-optical device model, which is used to determine the effect of varying these parameters on the efficiency. The results show that a mobility imbalance and doping can lead to improved performance at large thicknesses, partially contradicting previous studies performed on fullerene-based systems. The findings highlight the importance of determining electron and hole mobilities selectively, as well as characterizing recombination and doping concentrations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据