4.6 Article

Solution processed transparent conductive hybrid thin films based on silver nanowires, zinc oxide and graphene

期刊

MATERIALS TODAY COMMUNICATIONS
卷 26, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.mtcomm.2021.102162

关键词

Transparent conductive electrodes; Silver nanowires; Zinc oxide nanoparticles; Graphene coating; Optoelectronic properties

资金

  1. TUBITAK 2219 Research Program (Scientific and Technological Research Council of Turkey-TUBITAK)

向作者/读者索取更多资源

Transparent conductive hybrid thin films based on silver nanowires, zinc oxide, and graphene were prepared using solution processing methods. The films were characterized by XRD, SEM, conductivity measurement, and stability analysis, showing that graphene flakes coating improved the conductivity and stability of the hybrid films.
Transparent conductive hybrid thin films based on silver nanowires (AgNW), zinc oxide (ZnO) and graphene were prepared using solution processing methods. For this study, the hexagonal (wurtzite) ZnO particles with a flower-like structure were synthesized by sol-gel reaction using zinc acetate dihydrate as a precursor at room temperature and pH value of 10. Ethanol dispersions of ZnO and commercial AgNW were deposited by spincoating method on glass substrates with fixed parameters to obtain AgNW-ZnO and ZnO-AgNW films, then their surfaces were covered with monolayer graphene flakes (MGFs) using a double self-assembly (DSA) process. The hybrid ZnO-AgNW-MGFs and AgNW-ZnO-MGFs films were characterized by XRD, SEM, UV?vis, four-point probe conductivity measurement, thermal (85 degrees C for 120 h) and long-term (ambient condition for 120 days) stability analyzes. The transmittances of AgNW-ZnO and ZnO-AgNW films were identical at 550 nm (80 %) and their sheet resistances (R-s) values were measured as 20.6 and 21.6 Omega/sq, respectively. After the MGFs deposition, the transmittances of hybrid films reduced to 72.5 and 76.8 %, while their R-s values decreased to 17.6 and 21.4 Omega/sq, respectively. Graphene flakes coating both enhanced the conductivity of hybrid films by improving the connection between silver nanowires and increased the thermal and long-term ambient stability of the films due to its barrier property against oxidation of silver nanowires.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据