4.8 Review

Bacterial Cellulose: A Robust Platform for Design of Three Dimensional Carbon-Based Functional Nanomaterials

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 49, 期 1, 页码 96-105

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.accounts.5b00380

关键词

-

资金

  1. National Natural Science Foundation of China [21521001, 21431006, 91227103, 21503207]
  2. Ministry of Science and Technology of China [2014CB931800, 2013CB933900]
  3. Chinese Academy of Sciences [KJZD-EW-M01-1]
  4. Users with Excellence of Hefei Science Center of CAS [2015HSC-UE007, 2015SRG-HSC038]

向作者/读者索取更多资源

Three dimensional (3D) carbon nanomaterials exhibit great application potential in environmental protection, electrochemical energy storage and conversion, catalysis, polymer science, and advanced sensors fields. Current methods for preparing 3D carbon nanomaterials, for example, carbonization of organogels, chemical vapor deposition, and self-assembly of nanocarbon building blocks, inevitably involve some drawbacks, such as expensive and toxic precursors, complex equipment and technological requirements, and low production ability. From the viewpoint of practical application, it is highly desirable to develop a simple, cheap, and environmentally friendly way for fabricating 3D carbon nanomaterials in large scale. On the other hand, in order to extend the application scope and improve the performance of 3D carbon nanomaterials, we should explore efficient strategies to prepare diverse functional nanomaterials based on their 3D carbon structure. Recently, many researchers tend to fabricate high-performance 3D carbon-based nanomaterials from biomass, which is low cost, easy to obtain, and nontoxic to humans. Bacterial cellulose (BC), a typical biomass material, has long been used as the raw material of nata-de-coco (an indigenous dessert food of the Philippines). It consists of a polysaccharide with a beta-1,4-glycosidic linkage and has a interconnected 3D porous network structure. Interestingly, the network is made up of a random assembly of cellulose nanofibers, which have a high aspect ratio with a diameter of 20-100 nm. As a result, BC has a high specific surface area. Additionally, BC hydrogels can be produced on an industrial scale via a microbial fermentation process at a very low price. Thus, it can be an ideal platform for design of 3D carbon-based functional nanomaterials. Before our work, no systematic work and summary on this topic had been reported. This Account presents the concepts and strategies of our studies on BC in the past few years, that is, converting cheap biomass into high value-added 3D carbon nanomaterials and designing diverse functional materials on 3D carbon structure. We first briefly introduce the history, constituent, and microstructure features of BC and discuss its advantages as a raw material for preparing the CNF aerogels. Then, we summarize the methods and strategies for preparing various 3D carbon-based nanomaterials from BC. In addition, the potential applications of the developed CNF aerogel based functional materials are also highlighted in this Account, including stretchable conductors, oxygen reduction reaction catalysts, supercapacitors, lithium-ion battery, and oil cleanup. Finally, we give some prospects on the future challenges in this emerging research area of designing CNF aerogel based functional nanomaterials from BC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据