4.6 Article

Catalysis Preparation of Biodiesel from Waste Schisandra chinensis Seed Oil with the Ionic Liquid Immobilized in a Magnetic Catalyst: Fe3O4@SiO2@[C4mim]HSO4

期刊

ACS OMEGA
卷 6, 期 11, 页码 7896-7909

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.1c00504

关键词

-

资金

  1. National Natural Science Foundation of China [31890773]
  2. Fundamental Research Funds for the Central Universities [2572019BB02]
  3. Edanz Group China

向作者/读者索取更多资源

The study aimed to synthesize a magnetic catalyst-immobilized ionic liquid for biodiesel preparation, and Fe3O4@SiO2@[C4mim]HSO4 showed the highest catalytic efficiency. Under the optimum reaction conditions, the yield of biodiesel was 0.557 g/g and the thermal value increased to 38.28 kJ/g. The catalyst maintained high catalytic efficiency even after multiple reuse cycles.
The purpose of this study was to synthesize a magnetic material that could be easily separated by a magnetic field and combined the catalytic function of an acid/base ionic liquid with silicon for biodiesel preparation. A kind of magnetic catalyst-immobilized ionic liquid was synthesized by a three-step method. The synthesis conditions in each step were optimized by single-factor analysis. Under the optimum conditions, 206.83 mg of ionic liquid (>43.63%) was immobilized on SiO2 (per gram). Heating under reflux was applied to extract Schisandra chinensis seed oil with an average yield of 10.9%. According to the biodiesel yields, Fe3O4@SiO2@[C4mim]HSO4 was the most efficient catalyst in the methyl esterification reaction. Under the optimum reaction conditions, seed oil (10.0 g) was mixed with methanol (70 mL) under continuous mechanical stirring for 3 h, and the yield of biodiesel was 0.557 g/g (the catalyst efficiency was about 89.2%). Also, the thermal value was increased from 32.14 kJ/g (seed oil) to 38.28 kJ/g (biodiesel). The catalytic efficiency of Fe3O4@SiO2@[C4mim]HSO4 was 87.6% of the first being used after four reuse cycles, and 71.4% of the first being used after six reuse cycles in the methylation reaction. The yields and physical and chemical properties of biodiesel were determined.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据