4.6 Article

Identification of Escherichia coli and Related Enterobacteriaceae and Examination of Their Phenotypic Antimicrobial Resistance Patterns: A Pilot Study at A Wildlife-Livestock Interface in Lusaka, Zambia

期刊

ANTIBIOTICS-BASEL
卷 10, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/antibiotics10030238

关键词

antimicrobial resistance; domestic animals; Escherichia coli; molecular detection; public health; wildlife; wildlife– livestock– human interface; Zambia

资金

  1. Japanese Society for the Promotion of Science (JSPS) [R11712]

向作者/读者索取更多资源

This cross-sectional study in Zambia discovered the transmission of antimicrobial resistance among Escherichia coli and other enterobacteria isolated from healthy wildlife and livestock cohabiting in a game ranch near Lusaka. The study highlights the need for further investigation on the role of wildlife in the development and transmission of antimicrobial resistance, a global concern.
A cross-sectional study was used to identify and assess prevalence and phenotypic antimicrobial resistance (AMR) profiles of Escherichia coli and other enterobacteria isolated from healthy wildlife and livestock cohabiting at a 10,000 acres game ranch near Lusaka, Zambia. Purposive sampling was used to select wildlife and livestock based on similarities in behavior, grazing habits and close interactions with humans. Isolates (n = 66) from fecal samples collected between April and August 2018 (n = 84) were examined following modified protocols for bacteria isolation, biochemical identification, molecular detection, phylogenetic analysis, and antimicrobial susceptibility testing by disc diffusion method. Data were analyzed using R software, Genetyx ver.12 and Mega 6. Using Applied Profile Index 20E kit for biochemical identification, polymerase chain reaction assay and sequencing, sixty-six isolates were identified to species level, of which Escherichia coli (72.7%, 48/66), E. fergusonii (1.5%, 1/66), Shigella sonnei (22.7%, 14/66), Sh. flexinerri (1.5%, 1/66) and Enterobacteriaceae bacterium (1.5%, 1/66), and their relationships were illustrated in a phylogenetic tree. Phenotypic antimicrobial resistance or intermediate sensitivity expression to at least one antimicrobial agent was detected in 89.6% of the E. coli, and 73.3% of the Shigella isolates. The E. coli isolates exhibited the highest resistance rates to ampicillin (27%), ceftazidime (14.3%), cefotaxime (9.5%), and kanamycin (9.5%). Multidrug resistance (MDR) was detected in 18.8% of E. coli isolates while only 13.3% Shigella isolates showed MDR. The MDR was detected among isolates from impala and ostrich (wild animals in which no antimicrobial treatment was used), and in isolates from cattle, pigs, and goats (domesticated animals). This study indicates the possible transmission of drug-resistant microorganisms between animals cohabiting at the wildlife-livestock interface. It emphasizes the need for further investigation of the role of wildlife in the development and transmission of AMR, which is an issue of global concern.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据