4.7 Article

Effect of two different fins (longitudinal-tree like) and hybrid nano-particles (MoS2 - TiO2) on solidification process in triplex latent heat thermal energy storage system

期刊

ALEXANDRIA ENGINEERING JOURNAL
卷 60, 期 1, 页码 1967-1979

出版社

ELSEVIER
DOI: 10.1016/j.aej.2020.12.001

关键词

Solidification process; Triplex LHTESS; Hybrid nanoparticles; Longitudinal fin; Tree like fin; PCM

向作者/读者索取更多资源

This study explores the use of a triplex-tube heat exchanger with hybrid nanoparticles to address the weak thermal conductivity of Phase Change Material (PCM) based storage units. Through Galerkin Finite Element Method (GFEM) analysis and experimental validation, it was found that the combined usage of nanoparticles and tree-like fins significantly reduces solidification time, with tree-like fins demonstrating the best performance.
To tackle global warming, a reliable storage system seems crucial due to unpredictability of renewable energy. As a result, storage units based on Phase Change Material (PCM) are found to be of great worth where latent heat transfer occurring in an almost isothermal condition lay the foundation for far more compact and easy-to-fabricate storage components. Despite their advantageous, one major drawback being weak thermal conductivity needs to be addressed. So, in this study a triplex-tube heat exchanger with tree-like and rectangular fins along with hybrid nanoparticles made of MoS2 - TiO2 are put into perspective to dispose of this weakness and Galerkin Finite Element Method (GFEM) is applied using FlexPDE to analyze the solidification process and evaluate the influence of single and combined usage of fins and nanoparticles. Moreover, the credibility of this study and GFEM has been confirmed by an experimental work. The results unveiled that, while the combined usage of nanoparticles and tree-like fins gives the best result by lowering the solidification time by 78% compared to bare tube, tree-like fins claim the best performance taking 1700 s followed by rectangular fins with 3500 s if nanoparticles are out of reach. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据