4.7 Article

Nettle-Leaf Extract Derived ZnO/CuO Nanoparticle-Biopolymer-Based Antioxidant and Antimicrobial Nanocomposite Packaging Films and Their Impact on Extending the Post-Harvest Shelf Life of Guava Fruit

期刊

BIOMOLECULES
卷 11, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/biom11020224

关键词

anti-microbial; chitosan; guava; nanocomposite; perishable fruits; phyto-synthesis; storage shelf-life

资金

  1. ICAR, New Delhi under the Nanotechnology Platform scheme

向作者/读者索取更多资源

This study successfully synthesized CuO and ZnO nanoparticles and incorporated them into chitosan-based nanocomposite films to extend the shelf life of guava fruits. The nanoparticles exhibited strong antioxidant and antimicrobial activity, improving film characteristics and extending the shelf life of packaged fruits by one week compared to unpackaged control fruits.
Green synthesized metal oxide nanoparticles (NPs) have prominent applications in antimicrobial packaging systems. Here we have attempted for the fabrication of chitosan-based nanocomposite film containing Urtica dioica leaf extract derived copper oxide (CuO) and zinc oxide (ZnO) NPs for shelf-life extension of the packaged guava fruits. Electron microscopy and spectroscopy analysis of the CuO and ZnO NPs exhibited nano-scale size, spherical morphologies, and negative zeta-potential values. The NPs possessed appreciable antioxidant and antimicrobial activity (AMA) in order of CuO NPs > ZnO NPs > nettle extract. Therefore, this work establishes for the first time the successful synthesis of CuO NPs and compares its antimicrobial and antioxidant properties with ZnO NPs. On incorporation in chitosan, the polymer nanocomposite films were developed by solvent casting technique. The developed films were transparent, had low antioxidant but substantial AMA. The NP supplementation improved the film characteristics as evident from the decrease in moisture content, water holding capacity, and solubility of the films. The nanocomposite films improved the quality attributes and shelf life of guava fruits by one week on packaging and storage compared to unpackaged control fruits. Therefore, this study demonstrates the higher antimicrobial potential of the nettle leaf extract derived CuO/ZnO NPs for development of antimicrobial nanocomposite films as a promising packaging solution for enhancing the shelf life of various perishable fruits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据