4.8 Article

Sulfidation of Nano Zerovalent Iron (nZVI) for Improved Selectivity During In-Situ Chemical Reduction (ISCR)

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 50, 期 17, 页码 9558-9565

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.6b02170

关键词

-

资金

  1. Strategic Environmental Research and Development Program of the U.S. Department of Defense [ER-2308]

向作者/读者索取更多资源

The high reactivity of nano zerovalent iron (nZVI) leads to inefficient treatment due to competition with various natural reductant demand (NRD) processes, especially the reduction of water to hydrogen. Here we show that this limitation can be alleviated by sulfidation (i.e., modification by reducing sulfur compounds). nZVI synthesized on carboxylmethylcelluose (CMC-nZVI) was sulfidated with either sulfide or dithionite. The reactivity of the resulting materials was examined with three complementary assays: (i) direct measurement of hydrogen production, (ii) reduction of a colorimetric redox probe (indigo disulfonate, I2S), and (iii) dechlorination of trichloroethylene (TCE). The results indicate that sulfidation at S/Fe molar ratios of >0.3, effectively eliminates reaction with water, but retains significant reactivity with TCE. However, sulfidation with sulfide leaves most of the nZVI as Fe(0), whereas dithionite converts a majority of the nZVI to FeS (thus consuming much of the reducing capacity originally provided by the Fe(0)). Simplified numerical models show that the reduction kinetics of 12S and TCE are mainly dependent on the initial reducing equivalents and that the TCE reduction rate is affected by the aging of FeS. Overall, the results suggest that pretreatment of nZVI with reducing sulfur compounds could result in substantial improvement in nZVI selectivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据