4.8 Article

Reductive Dechlorination of Trichloroethene by Zero-valent Iron Nanoparticles: Reactivity Enhancement through Sulfidation Treatment

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 50, 期 23, 页码 12992-13001

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.6b03997

关键词

-

资金

  1. TTU
  2. National Science Foundation [CHE-1611465]

向作者/读者索取更多资源

Zero-valent iron nanoparticles (nZVI) synthesized in the presence of reduced sulfur compounds have been shown to degrade trichloroethene (TCE) at significantly higher rates. However, the applicability of sulfidation as a general means to enhance nZVI reactivity under different particle preparation conditions and the underlying cause for this enhancement effect are not well understood. In this study, the effects of sulfidation reagent, time point of sulfidation, and sulfur loading on the resultant particles were assessed through TCE degradation experiments. Up to 60-fold increase in TCE reaction rates was observed upon sulfidation treatment, with products being fully dechlorinated hydrocarbons. While the reactivity of these sulfur-treated nZVI (S-nZVI) was relatively unaffected by the sulfidation reagent (viz., sodium sulfide, dithionite, or thiosulfate) or the sequence of sulfidation relative to iron reduction, TCE reaction rates were found to depend strongly on sulfur to iron ratio. At a low sulfur loading, TCE degradation was accelerated with increasing sulfur dose. The rate constant reached a limiting value, however, as the sulfur to iron mole ratio was greater than 0.025. Different from previous propositions that iron sulfidation leads to more efficient TCE or tetrachloroethene (PCE) degradation by enabling depassivation of iron surface, affording catalytic pathways, or facilitating electron transfer, we show that the role of sulfur in nZVI lies essentially in its ability to poison hydrogen recombination, which drives surface reactions to favor reduction by atomic hydrogen. This implies that the reactivity of S-nZVI is contaminant-specific and is selective against the background reaction of water reduction. As the effect of sulfur manifests through surface processes, sulfidation represents a broadly applicable surface modification approach to modulate or increase the reactivity of nZVI for treating TCE and other related contaminants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据