4.8 Article

Bismuth telluride topological insulator synthesized using liquid metal alloys: Test of NO2 selective sensing

期刊

APPLIED MATERIALS TODAY
卷 22, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apmt.2021.100954

关键词

Liquid metal interface; Liquid-liquid interface; Autogenous potential; Self-deposition; Gallium

资金

  1. Australian Research Council (ARC) Laureate Fellowship grant [FL180100053]
  2. ARC Centre of Excellence FLEET [CE170100039]
  3. UNSW Electron Microscope Unit (EMU)

向作者/读者索取更多资源

By utilizing liquid metal interfaces as reaction media with their autogenous surface potential, highly crystalline bismuth telluride nanostructures were successfully synthesized. Sensors fabricated using these materials exhibit good selectivity and sensitivity for nitrogen dioxide adsorption at low temperatures.
Nanostructured topological insulators (TIs), with high surface area and peculiar charge transport, can be advantageous for gas sensing applications. Here interfaces of liquid gallium alloys are used as reaction media to synthesize highly crystalline bismuth telluride (Bi2Te3), which is a well-known TI. The synthesis via these interfaces is self-driven due to the presence of an autogenous interfacial potential on the liquid gallium-indium alloy (EGaIn). Introducing metal-based cations (Bi3+-HTeO2+ in acidic media) into the interfacial Helmholtz zone results in highly crystalline Bi2Te3 platelets. Due to the non-polar surface of EGaIn liquid, the deposited films can be readily exfoliated. The films exhibit unique morphologies of nanostructured platelet-like branches. Sensors fabricated using Bi2Te3 feature selective and sensitive nitrogen dioxide (NO2) physisorption at low operating temperatures. Overall, utilizing liquid metal interfaces as media to drive reactions, which take advantage of their autogenous surface potential, represents a fast and direct protocol that can be further explored to synthesize a variety of functional nanomaterials. Particularly, the approach offers an opportunity for the creation of TIs which are challenging to achieve using traditional potentiostatic methods. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据