4.6 Article

A Compact Modular 5 GW Pulse PFN-Marx Generator for Driving HPM Source

期刊

ELECTRONICS
卷 10, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/electronics10050545

关键词

PFN-Marx; compact; modular; trigger source; gas switch; mica capacitor

向作者/读者索取更多资源

A compact and modular PFN-Marx generator capable of producing intense electron beams for high-power microwave generation. The generator consists of 22 stages of PFN modules, each module containing three parallel-connected mica capacitors. Experimental results demonstrate that the generator can deliver 500 kV electrical pulses at a repetition rate of 30 Hz on a water load.
A compact and modular pulse forming network (PFN)-Marx generator with output parameters of 5 GW, 500 kV, and 30 Hz repetition is designed and constructed to produce intense electron beams for the purpose of high-power microwave (HPM) generation in the paper. The PFN-Marx is composed by 22 stages of PFN modules, and each module is formed by three mica capacitors (6 nF/50 kV) connected in parallel. Benefiting from the utilization of mica capacitors with high energy density and a mini-trigger source integrated into the magnetic transformer and the magnetic switch, the compactness of the PFN-Marx system is improved significantly. The structure of the PFN module, the gas switch unit, and the connection between PFN modules and switches are well designed for modular realization. Experimental results show that this generator can deliver electrical pulses with the pulse width of 100 ns and amplitude of 500 kV on a 59-ohm water load at a repetition rate of 30 Hz in burst mode. The PFN-Marx generator is fitted into a cuboid stainless steel case with the length of 80 cm. The ratio of storage energy to volume and the ratio of power to weight of the PFN-Marx generator are calculated to be 6.5 J/L and 90 MW/kg, respectively. Furthermore, utilizing the generator to drive the transit time oscillator (TTO) at a voltage level of 450 kV, a 100 MW microwave pulse with the pulse width of 20 ns is generated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据