4.6 Article

Predicting Survival Duration With MRI Radiomics of Brain Metastases From Non-small Cell Lung Cancer

期刊

FRONTIERS IN ONCOLOGY
卷 11, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fonc.2021.621088

关键词

radiomics; machine learning; survival; lung cancer; brain metastases; brain MRI; artificial intelligence

类别

资金

  1. National Cancer Institute of the National Institutes of Health [P30CA033572, 1U54CA209978-01A1]
  2. Center for Cancer and Aging Pilot Project Award at City of Hope
  3. City of Hope Research Initiative Health Equity Pilot Grant

向作者/读者索取更多资源

The study used radiomic analysis of brain metastases from NSCLC and found that radiomic scores can serve as non-invasive biomarkers for predicting survival duration. By utilizing radiomic features of EGFR, ALK, and KRAS mutations, each mutation-positive group could be divided into two subgroups with significantly different survival durations.
Background: Brain metastases are associated with poor survival. Molecular genetic testing informs on targeted therapy and survival. The purpose of this study was to perform a MR imaging-based radiomic analysis of brain metastases from non-small cell lung cancer (NSCLC) to identify radiomic features that were important for predicting survival duration. Methods: We retrospectively identified our study cohort via an institutional database search for patients with brain metastases from EGFR, ALK, and/or KRAS mutation-positive NSCLC. We segmented the brain metastatic tumors on the brain MR images, extracted radiomic features, constructed radiomic scores from significant radiomic features based on multivariate Cox regression analysis (p < 0.05), and built predictive models for survival duration. Result: Of the 110 patients in the cohort (mean age 57.51 +/- 12.32 years; range: 22-85 years, M:F = 37:73), 75, 26, and 15 had NSCLC with EGFR, ALK, and KRAS mutations, respectively. Predictive modeling of survival duration using both clinical and radiomic features yielded areas under the receiver operative characteristic curve of 0.977, 0.905, and 0.947 for the EGFR, ALK, and KRAS mutation-positive groups, respectively. Radiomic scores enabled the separation of each mutation-positive group into two subgroups with significantly different survival durations, i.e., shorter vs. longer duration when comparing to the median survival duration of the group. Conclusion: Our data supports the use of radiomic scores, based on MR imaging of brain metastases from NSCLC, as non-invasive biomarkers for survival duration. Future research with a larger sample size and external cohorts is needed to validate our results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据