4.8 Article

Genetic, Structural, and Phenotypic Properties of MS2 Coliphage with Resistance to ClO2 Disinfection

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 50, 期 24, 页码 13520-13528

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.6b04170

关键词

-

资金

  1. Swiss National Foundation [31003A_138319]
  2. Swiss National Science Foundation (SNF) [31003A_138319] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Common water disinfectants like chlorine have been reported to select for resistant viruses, yet little attention has been devoted to characterizing disinfection resistance. Here, we investigated the resistance of MS2 coliphage to inactivation by chlorine dioxide (ClO2). ClO2 inactivates MS2 by degrading its structural proteins, thereby disrupting the ability of MS2 to attach to and infect its host. ClO2-resistant virus populations emerged not only after repeated cycles of ClO2 disinfection followed by regrowth but also after dilution regrowth cycles in the absence of ClO2. The resistant populations exhibited several fixed mutations which caused the substitution of ClO2-labile by ClO2-stable amino acids. On a phenotypic level, these mutations resulted in a more stable host binding during inactivation compared to the wild-type, thus resulting in a greater ability to maintain infectivity. This conclusion was supported by cryo-electron microscopy reconstruction of the virus particle, which demonstrated that most structural modification occurred in the putative A protein, an important binding factor. Resistance was specific to the inactivation mechanism of ClO2 and did not result in significant cross-resistance to genome-damaging disinfectants. Overall, our data indicate that resistant viruses may emerge even in the absence of ClO2 pressure but that they can be inactivated by other common disinfectants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据