4.6 Article

Loss of COX4I1 Leads to Combined Respiratory Chain Deficiency and Impaired Mitochondrial Protein Synthesis

期刊

CELLS
卷 10, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/cells10020369

关键词

mitochondria; OXPHOS; cI; COX; cIV; COX4; knock-out; cIV assembly; complex I; biogenesis interdependency; complexome profiling; mitochondrial protein synthesis

资金

  1. Proteomic Core Facility, BIOCEV, Faculty of Science, Charles University in Prague
  2. OP VaVpI [CZ.1.05/1.1.00/02.0109]
  3. MRC [MC_UU_00015/5, MC_EX_MR/P007031/1, MC_UP_1002/1] Funding Source: UKRI

向作者/读者索取更多资源

The study reveals that in the OXPHOS system localized in the inner mitochondrial membrane, interconnected complexes form supercomplexes to maintain ATP production. Deficiencies in cytochrome c oxidase (cIV) or cytochrome bc1 complex (cIII) affect the formation and maintenance of NADH dehydrogenase (cI). Experimental evidence confirms the interdependency between cI and cIV.
The oxidative phosphorylation (OXPHOS) system localized in the inner mitochondrial membrane secures production of the majority of ATP in mammalian organisms. Individual OXPHOS complexes form supramolecular assemblies termed supercomplexes. The complexes are linked not only by their function but also by interdependency of individual complex biogenesis or maintenance. For instance, cytochrome c oxidase (cIV) or cytochrome bc1 complex (cIII) deficiencies affect the level of fully assembled NADH dehydrogenase (cI) in monomeric as well as supercomplex forms. It was hypothesized that cI is affected at the level of enzyme assembly as well as at the level of cI stability and maintenance. However, the true nature of interdependency between cI and cIV is not fully understood yet. We used a HEK293 cellular model where the COX4 subunit was completely knocked out, serving as an ideal system to study interdependency of cI and cIV, as early phases of cIV assembly process were disrupted. Total absence of cIV was accompanied by profound deficiency of cI, documented by decrease in the levels of cI subunits and significantly reduced amount of assembled cI. Supercomplexes assembled from cI, cIII, and cIV were missing in COX4I1 knock-out (KO) due to loss of cIV and decrease in cI amount. Pulse-chase metabolic labeling of mitochondrial DNA (mtDNA)-encoded proteins uncovered a decrease in the translation of cIV and cI subunits. Moreover, partial impairment of mitochondrial protein synthesis correlated with decreased content of mitochondrial ribosomal proteins. In addition, complexome profiling revealed accumulation of cI assembly intermediates, indicating that cI biogenesis, rather than stability, was affected. We propose that attenuation of mitochondrial protein synthesis caused by cIV deficiency represents one of the mechanisms, which may impair biogenesis of cI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据