4.3 Article

Novel deep learning-based noise reduction technique for prostate magnetic resonance imaging

期刊

ABDOMINAL RADIOLOGY
卷 46, 期 7, 页码 3378-3386

出版社

SPRINGER
DOI: 10.1007/s00261-021-02964-6

关键词

Prostate; Deep learning; Magnetic resonance; Cancer; Endorectal coil

向作者/读者索取更多资源

This study evaluated the performance of a new deep learning-based reconstruction method in improving image quality and reducing artifacts in prostate MRI. The results showed that prostate imaging without the use of an endorectal coil could benefit from deep learning reconstruction.
Introduction Magnetic resonance imaging (MRI) has played an increasingly major role in the evaluation of patients with prostate cancer, although prostate MRI presents several technical challenges. Newer techniques, such as deep learning (DL), have been applied to medical imaging, leading to improvements in image quality. Our goal is to evaluate the performance of a new deep learning-based reconstruction method, DLR in improving image quality and mitigating artifacts, which is now commercially available as AIR(TM) Recon DL (GE Healthcare, Waukesha, WI). We hypothesize that applying DLR to the T2WI images of the prostate provides improved image quality and reduced artifacts. Methods This study included 31 patients with a history of prostate cancer that had a multiparametric MRI of the prostate with an endorectal coil (ERC) at 1.5 T or 3.0 T. Four series of T2-weighted images were generated in total: one set with the ERC signal turned on (ERC) and another set with the ERC signal turned off (Non-ERC). Each of these sets then reconstructed using two different reconstruction methods: conventional reconstruction (Conv) and DL Recon (DLR): ERCDLR, ERCConv, Non-ERCDLR, and Non-ERCConv. Three radiologists independently reviewed and scored the four sets of images for (i) image quality, (ii) artifacts, and (iii) visualization of anatomical landmarks and tumor. Results The Non-ERCDLR scored as the best series for (i) overall image quality (p < 0.001), (ii) reduced artifacts (p < 0.001), and (iii) visualization of anatomical landmarks and tumor. Conclusion Prostate imaging without the use of an endorectal coil could benefit from deep learning reconstruction as demonstrated with T2-weighted imaging MRI evaluations of the prostate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据