4.8 Article

Environmental Life Cycle Analysis of Water and CO2-Based Fracturing Fluids Used in Unconventional Gas Production

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 50, 期 23, 页码 13134-13141

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.6b02913

关键词

-

资金

  1. U.S. National Science Foundation [CBET-1254839]

向作者/读者索取更多资源

Many of the environmental impacts associated with hydraulic fracturing of unconventional gas wells are tied to the large volumes of water that such operations require. Efforts to develop nonaqueous alternatives have focused on carbon dioxide as a tunable working fluid even though the full environmental and production impacts of a switch away from water have yet to be quantified. Here we report on a life cycle analysis of using either water or CO2 for gas production in the Marcellus shale. The results show that CO2-based fluids, as currently conceived, could reduce greenhouse gas emissions by 400% (with sequestration credit) and water consumption by 80% when compared to conventional water-based fluids. These benefits are offset by a 44% increase in net energy use when compared to slickwater fracturing as well as logistical barriers resulting from the need to move and store large volumes of CO2. Scenario analyses explore the outlook for CO2, which under best-case conditions could eventually reduce life cycle energy, water, and greenhouse gas (GHG) burdens associated with fracturing. To achieve these benefits, it will be necessary to reduce CO2 sourcing and transport burdens and to realize opportunities for improved energy recovery, averted water quality impacts, and carbon storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据