4.7 Article

Unitary-coupled restricted Boltzmann machine ansatz for quantum simulations

期刊

NPJ QUANTUM INFORMATION
卷 7, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41534-020-00347-1

关键词

-

向作者/读者索取更多资源

This study presents a novel method to generate complex-valued RBM-NQS, achieving modeling complex-valued wave functions, using minimal ancilla qubits for simulating hidden spins in RBM architecture, and avoiding post-selections to enhance scalability.
Neural-network quantum state (NQS) has attracted significant interests as a powerful wave-function ansatz to model quantum phenomena. In particular, a variant of NQS based on the restricted Boltzmann machine (RBM) has been adapted to model the ground state of spin lattices and the electronic structures of small molecules in quantum devices. Despite these progresses, significant challenges remain with the RBM-NQS-based quantum simulations. In this work, we present a state-preparation protocol to generate a specific set of complex-valued RBM-NQS, which we name the unitary-coupled RBM-NQS, in quantum circuits. Our proposal expands the applicability of NQS as prior works deal exclusively with real-valued RBM-NQS for quantum algorithms. With this scheme, we achieve (1) modeling complex-valued wave functions, (2) using as few as one ancilla qubit to simulate M hidden spins in an RBM architecture, and (3) avoiding post-selections to improve scalability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据