4.7 Article

Free-space optical neural network based on thermal atomic nonlinearity

期刊

PHOTONICS RESEARCH
卷 9, 期 4, 页码 B128-B134

出版社

CHINESE LASER PRESS
DOI: 10.1364/PRJ.415964

关键词

-

类别

资金

  1. Washington Research Foundation
  2. UW Reality Lab
  3. Futurewei
  4. Facebook
  5. Amazon
  6. Google

向作者/读者索取更多资源

This study introduces a free-space optical ANN with linear weight summation and nonlinear activation enabled by saturable absorption of thermal atoms, achieving successful image classification of handwritten digits with a significant improvement in classification accuracy compared to linear models.
As artificial neural networks (ANNs) continue to make strides in wide-ranging and diverse fields of technology, the search for more efficient hardware implementations beyond conventional electronics is gaining traction. In particular, optical implementations potentially offer extraordinary gains in terms of speed and reduced energy consumption due to the intrinsic parallelism of free-space optics. At the same time, a physical nonlinearity-a crucial ingredient of an ANN-is not easy to realize in free-space optics, which restricts the potential of this platform. This problem is further exacerbated by the need to also perform the nonlinear activation in parallel for each data point to preserve the benefit of linear free-space optics. Here, we present a free-space optical ANN with diffraction-based linear weight summation and nonlinear activation enabled by the saturable absorption of thermal atoms. We demonstrate, via both simulation and experiment, image classification of handwritten digits using only a single layer and observed 6% improvement in classification accuracy due to the optical nonlinearity compared to a linear model. Our platform preserves the massive parallelism of free-space optics even with physical nonlinearity, and thus opens the way for novel designs and wider deployment of optical ANNs. (C) 2021 Chinese Laser Press

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据