4.6 Article

Mathematical modeling of the SARS-CoV-2 epidemic in Qatar and its impact on the national response to COVID-19

期刊

JOURNAL OF GLOBAL HEALTH
卷 11, 期 -, 页码 -

出版社

INT SOC GLOBAL HEALTH
DOI: 10.7189/jogh.11.05005

关键词

-

资金

  1. Biomedical Research Program at Weill Cornell Medicine-Qatar
  2. Ministry of Public Health and Hamad Medical Corporation
  3. Biostatistics, Epidemiology and Biomathematics Research Core at Weill Cornell Medicine-Qatar

向作者/读者索取更多资源

Mathematical modeling and forecasting successfully guided Qatar's national response to the epidemic, effectively reducing the impact on the healthcare system and bringing the epidemic under control.
Background Mathematical modeling constitutes an important tool for planning robust responses to epidemics. This study was conducted to guide the Qatari national response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic. The study investigated the epidemic's time-course, forecasted health care needs, predicted the impact of social and physical distancing restrictions, and rationalized and justified easing of restrictions. Methods An age-structured deterministic model was constructed to describe SARS-CoV-2 transmission dynamics and disease progression throughout the population. Results The enforced social and physical distancing interventions flattened the epidemic curve, reducing the peaks for incidence, prevalence, acute-care hospitalization, and intensive care unit (ICU) hospitalizations by 87%, 86%, 76%, and 78%, respectively. The daily number of new infections was predicted to peak at 12 750 on May 23, and active-infection prevalence was predicted to peak at 3.2% on May 25. Daily acute-care and ICUcare hospital admissions and occupancy were forecast accurately and precisely. By October 15, 2020, the basic reproduction number R0 had varied between 1.07-2.78, and 50.8% of the population were estimated to have been infected (1.43 million infections). The proportion of actual infections diagnosed was estimated at 11.6%. Applying the concept of Rt tuning, gradual easing of restrictions was rationalized and justified to start on June 15, 2020, when Rt declined to 0.7, to buffer the increased interpersonal contact with easing of restrictions and to minimize the risk of a second wave. No second wave has materialized as of October 15, 2020, five months after the epidemic peak. Conclusions Use of modeling and forecasting to guide the national response proved to be a successful strategy, reducing the toll of the epidemic to a manageable level for the health care system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据