4.7 Article

Investigations into the effects of volatile biomass tar on the performance of Fe-based CLC oxygen carrier materials

期刊

ENVIRONMENTAL RESEARCH LETTERS
卷 11, 期 11, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1748-9326/11/11/115001

关键词

chemical-looping combustion; biomass; tar; chemical-looping reforming; bio-syngas upgrading; BECCS

资金

  1. EPSRC [EP/I010912/1]
  2. Engineering and Physical Sciences Research Council [EP/I010912/1] Funding Source: researchfish
  3. EPSRC [EP/I010912/1] Funding Source: UKRI

向作者/读者索取更多资源

In this study we present findings from investigations into interactions between biomass tar and two iron based oxygen carrier materials (OCMs) designed for chemical-looping applications: a 100% Fe2O3 (100Fe) OCM and a 60 wt% Fe2O3/40 wt% Al2O3 (60Fe40Al) OCM. A novel 6 kW(e) two-stage, fixed-bed reactor was designed and constructed to simulate a chemical-looping combustion (CLC) process with ex situ gasification of biomass. Beech wood was pyrolysed in the first stage of the reactor at 773 K to produce a tar-containing fuel gas that was used to reduce the OCM loaded into the 2nd stage at 973 K. The presence of either OCM was found to significantly reduce the amount of biomass tars exiting the reactor by up to 71 wt% compared with analogous experiments in which the biomass tar compounds were exposed to an inert bed of sand. The tar cracking effect of the 60Fe40Al OCM was slightly greater than the 100Fe OCM although the reduction in the tar yield was roughly equivalent to the increase in carbon deposition observed for the 60Fe40Al OCM compared with the 100Fe OCM. In both cases, the tar cracking effect of the OCMs appeared to be independent of the oxidation state in which the OCM was exposed to the volatile biomass pyrolysis products (i.e. Fe2O3 or Fe3O4). Exposing the pyrolysis vapours to the OCMs in their oxidised (Fe2O3) form favoured the production of CO2. The production of CO was favoured when the OCMs were in their reduced (Fe3O4) form. Carbon deposition was removed in the subsequent oxidation phase with no obvious deleterious effects on the reactivity in subsequent CLC cycles with reduction by 3 mol% CO.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据