4.8 Article

Synergistic Ice Inhibition Effect Enhances Rapid Freezing Cryopreservation with Low Concentration of Cryoprotectants

期刊

ADVANCED SCIENCE
卷 8, 期 6, 页码 -

出版社

WILEY
DOI: 10.1002/advs.202003387

关键词

cryopreservation; ice inhibition; synergistic effect; tungsten diselenide-polyvinyl pyrrolidone nanoparticles

资金

  1. National Natural Science Foundation of China [11627803]
  2. National Key R&D Program of China [2018 YFC0115500, 2018YFE0194500]
  3. USTC Research Funds of the Double First-Class Initiative [YD2380002001]
  4. CSC (Chinese Scholarship Council) Program

向作者/读者索取更多资源

In this study, tungsten diselenide (WSe2)-polyvinyl pyrrolidone (PVP) nanoparticles (NPs) were synthesized and shown to exhibit synergistic ice regulation ability. These NPs were successfully used for cryopreservation of human umbilical vein endothelial cell (HUVEC)-laden constructs, resulting in increased cell viabilities and good condition maintenance in vivo within 7 days. This work provides a novel strategy to suppress ice crystal formation and growth for the cryopreservation of cells, tissues, or organs.
Despite recent advances in controlling ice formation and growth, it remains a challenge to design anti-icing materials in various fields from atmospheric to biological cryopreservation. Herein, tungsten diselenide (WSe2)-polyvinyl pyrrolidone (PVP) nanoparticles (NPs) are synthesized through one-step solvothermal route. The WSe2-PVP NPs show synergetic ice regulation ability both in the freezing and thawing processes. Molecularly speaking, PVP containing amides group can form hydrogen bonds with water molecules. At a macro level, the WSe2-PVP NPs show adsorption-inhibition and photothermal conversation effects to synergistically restrict ice growth. Meanwhile, WSe2-PVP NPs are for the first time used for the cryopreservation of human umbilical vein endothelial cell (HUVEC)-laden constructs based on rapid freezing with low concentrations of cryoprotectants (CPAs), the experimental results indicate that a minimal concentration (0.5 mg mL(-1)) of WSe2-PVP NPs can increase the viabilities of HUVECs in the constructs post cryopreservation (from 55.8% to 83.4%) and the cryopreserved constructs can also keep good condition in vivo within 7 days. Therefore, this work provides a novel strategy to synergistically suppress the formation and growth of the ice crystalsfor the cryopreservation of cells, tissues, or organs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据