4.8 Article

Hierarchical Micro-Nanoclusters of Bimetallic Layered Hydroxide Polyhedrons as Advanced Sulfur Reservoir for High-Performance Lithium-Sulfur Batteries

期刊

ADVANCED SCIENCE
卷 8, 期 7, 页码 -

出版社

WILEY
DOI: 10.1002/advs.202003400

关键词

hollow polyhedrons; layered double hydroxides; lithium-sulfur batteries; nano-micro hierarchies; spray drying

资金

  1. Program for the Outstanding Young Talents of Hebei Province, China
  2. Natural Science Foundation of Hebei Province of China [B2020202052, B2019202277]
  3. Chunhui Project of Ministry of Education of the People's Republic of China [Z2017010]
  4. Guangdong Innovative and Entrepreneurial Team Program [2016ZT06C517]
  5. Science and Technology Program of Guangzhou [2019050001]
  6. Science and Technology Program of Zhaoqing [2019K038]
  7. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology,China [EERI_PI2020007]
  8. Natural Sciences and Engineering Research Council of Canada
  9. University of Waterloo
  10. Waterloo Institute for Nanotechnology

向作者/读者索取更多资源

In this study, a unique bimetallic NiCo-layered double hydroxide was developed as an advanced sulfur reservoir for lithium-sulfur batteries, replacing the traditional monometallic Co-LDH. The bimetallic configuration improved the electrode structure and chemical interactions, leading to enhanced cycling performance and rate capability of Li-S cells.
Rational construction of sulfur electrodes is essential in pursuit of practically viable lithium-sulfur (Li-S) batteries. Herein, bimetallic NiCo-layered double hydroxide (NiCo-LDH) with a unique hierarchical micro-nano architecture is developed as an advanced sulfur reservoir for Li-S batteries. Compared with the monometallic Co-layered double hydroxide (Co-LDH) counterpart, the bimetallic configuration realizes much enriched, miniaturized, and vertically aligned LDH nanosheets assembled in hollow polyhedral nanoarchitecture, which geometrically benefits the interface exposure for host-guest interactions. Beyond that, the introduction of secondary metal intensifies the chemical interactions between layered double hydroxide (LDH) and sulfur species, which implements strong sulfur immobilization and catalyzation for rapid and durable sulfur electrochemistry. Furthermore, the favorable NiCo-LDH is architecturally upgraded into closely packed micro-nano clusters with facilitated long-range electron/ion conduction and robust structural integrity. Due to these attributes, the corresponding Li-S cells realize excellent cyclability over 800 cycles with a minimum capacity fading of 0.04% per cycle and good rate capability up to 2 C. Moreover, highly reversible areal capacity of 4.3 mAh cm(-2) can be achieved under a raised sulfur loading of 5.5 mg cm(-2). This work provides not only an effective architectural design but also a deepened understanding on bimetallic LDH sulfur reservoir for high-performance Li-S batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据