4.7 Article

Supercritical CO2 Assisted Solvothermal Preparation of CoO/Graphene Nanocomposites for High Performance Lithium-Ion Batteries

期刊

NANOMATERIALS
卷 11, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/nano11030694

关键词

lithium-ion battery; anode; supercritical carbon dioxide; cobalt monoxide; graphene

资金

  1. National Key R&D Program of China [2017YFE0111500]
  2. National Natural Science Foundation of China [51933007, 51673123]

向作者/读者索取更多资源

The study demonstrates the preparation of cobalt monoxide/graphene nanocomposites using supercritical CO2 assisted solvothermal method, which promotes the crystallization of nanoparticles and the formation of stable chemical bonds on the graphene nanosheets. These improvements contribute to enhance the cycle stability and rate capability of the material when used as an anode in lithium-ion batteries.
Supercritical CO2 (scCO(2)) is often used to prepare graphene/metal oxide nanocomposite anodes for high performance lithium-ion batteries (LIBs) by the assisted solvothermal method due to its low viscosity, high diffusion, zero surface tension and good surface wettability. However, the formation mechanism of metal oxides and the combination mechanism between metal oxides and graphene in this system are superficial. In this work, a cobalt monoxide/graphene (CoO/G) nanocomposite is fabricated via the scCO(2) assisted solvothermal method followed by thermal treatment. We elucidate the mechanism that amorphous intermediates obtain by the scCO(2) assisted solvothermal method, and then ultrafine CoO nanoparticles are crystallized during the heat treatment. In addition, scCO(2) can promote CoO to be tightly fixed on the surface of graphene nanosheets by interfacial chemical bonds, which can effectively improve its cycle stability and rate performance. As expected, the CoO/G composites exhibit higher specific capacity (961 mAh g(-1) at 100 mA g(-1)), excellent cyclic stability and rate capability (617 mAh g(-1) after 500 cycles at 1000 mA g(-1)) when applied as an anode of LIB.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据