4.7 Article

Elastostatics of Bernoulli-Euler Beams Resting on Displacement-Driven Nonlocal Foundation

期刊

NANOMATERIALS
卷 11, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/nano11030573

关键词

Wieghardt foundation; Bernoulli– Euler beams; nonlocal effects; integral nonlocal model

资金

  1. MIUR [2017J4EAYB]
  2. University of Naples Federico II Research Unit

向作者/读者索取更多资源

The study introduces a new nonlocal approach by swapping the input and output fields involved in the original formulation of Wieghardt, using a displacement-driven nonlocal integral strategy to overcome inherent difficulties and issues. This new approach simplifies the integrodifferential equations governing the elastostatic problem of an inflected elastic slender beam, and involves kinematic, static, and new constitutive boundary conditions.
The simplest elasticity model of the foundation underlying a slender beam under flexure was conceived by Winkler, requiring local proportionality between soil reactions and beam deflection. Such an approach leads to well-posed elastostatic and elastodynamic problems, but as highlighted by Wieghardt, it provides elastic responses that are not technically significant for a wide variety of engineering applications. Thus, Winkler's model was replaced by Wieghardt himself by assuming that the beam deflection is the convolution integral between soil reaction field and an averaging kernel. Due to conflict between constitutive and kinematic compatibility requirements, the corresponding elastic problem of an inflected beam resting on a Wieghardt foundation is ill-posed. Modifications of the original Wieghardt model were proposed by introducing fictitious boundary concentrated forces of constitutive type, which are physically questionable, being significantly influenced on prescribed kinematic boundary conditions. Inherent difficulties and issues are overcome in the present research using a displacement-driven nonlocal integral strategy obtained by swapping the input and output fields involved in Wieghardt's original formulation. That is, nonlocal soil reaction fields are the output of integral convolutions of beam deflection fields with an averaging kernel. Equipping the displacement-driven nonlocal integral law with the bi-exponential averaging kernel, an equivalent nonlocal differential problem, supplemented with non-standard constitutive boundary conditions involving nonlocal soil reactions, is established. As a key implication, the integrodifferential equations governing the elastostatic problem of an inflected elastic slender beam resting on a displacement-driven nonlocal integral foundation are replaced with much simpler differential equations supplemented with kinematic, static, and new constitutive boundary conditions. The proposed nonlocal approach is illustrated by examining and analytically solving exemplar problems of structural engineering. Benchmark solutions for numerical analyses are also detected.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据