4.5 Article

Production and Properties of High Entropy Carbide Based Hardmetals

期刊

METALS
卷 11, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/met11020271

关键词

carbide; high-entropy carbides; binders; microstructure; mechanical properties; high-entropy hardmetals

向作者/读者索取更多资源

Dense, high-entropy carbide cobalt-bonded hardmetals with two different compositions were successfully manufactured by gas pressure sintering. The presence of some undissolved TaC and HfO2 in one of the compositions led to a reduced hardness to fracture toughness ratio. Measurements of magnetic saturation polarization showed marginal dissolution of the carbide-forming metal elements in the binder phase.
Dense, high-entropy carbide cobalt-bonded hardmetals with two different compositions, namely (Hf-Ta-Ti-Nb-V)C-19.2 vol% Co and (Ta-Ti-Nb-V-W)C-19.2 vol% Co, were successfully manufactured by gas pressure sintering (SinterHIP) at 1400 degrees C and 100 bar Ar pressure. The microstructure of these hardmetals consists of a rigid skeletal carbide phase embedded in a tough Co binder phase. EDS mappings showed that the high-entropy carbide phase did not decompose and that a typical hardmetal microstructure was realized. Only in the case of the (Hf-Ta-Ti-Nb-V)C-Co hardmetal was some undissolved TaC and HfO2, as well as some clustered vanadium titanium carbide phase, found, resulting in a split-up of the HEC phase into two very similar HEC phases. This resulted in a reduced hardness to fracture toughness ratio for this composition. Measurements of magnetic saturation polarization showed values between 57.5% and 70% of theoretical magnetic saturation polarization, indicating marginal dissolution of the carbide-forming metal elements in the binder phase. The hardness value HV10 for (Hf-Ta-Ti-Nb-V)C-19.2 vol% Co was 1203 HV10 and 1432 HV10 for (Ta-Ti-Nb-V-W)C-19.2 vol% Co.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据