4.7 Article

Oxidative stress and genotoxic effects of diamond nanoparticles

期刊

ENVIRONMENTAL RESEARCH
卷 148, 期 -, 页码 264-272

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2016.03.033

关键词

Nanotechnology; Nanodiamonds; In vivo toxicity; Oxidative stress; Genotoxicity

向作者/读者索取更多资源

Due to the unique and useful properties of nanodiamonds (ND), their production and use is rapidly increasing. Thus, more of these particles will be released into the environment and organisms will inevitably be exposed to them. The current knowledge about the toxicity of ND, especially in vivo toxicity, is fragmentary. In this study, the toxicity of nanodiamonds was assessed in Acheta domesticus following chronic exposure to different nominal concentrations of ND (20 and 20014 mu g(-1) food) administrated in food for the entire lifespan. The activity of oxidative stress enzymes (catalase, glutathione peroxidase), total antioxidant capacity, as well as the level of heat shock protein were determined. A significant increase in all of the measured parameters was observed after seven weeks of exposure in individuals exposed to higher concentrations of ND (200 mu g g(-1) food). In animals exposed to lower concentrations of ND (20 mu g g(-1) food), there were few significant changes to these parameters. Analysis of DNA damage performed after fourteen weeks using the comet assay revealed DNA instabilities in the insects, especially the ones that had been exposed to the higher doses of ND. These findings may suggest that the toxicity of ND is concentration dependent. While high doses interact in a toxic manner, trace amounts, which are more likely in the environment, might be safe for organisms. Extreme caution should be taken when handling nanodiamonds. (C) 2016 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据