4.6 Article

Endothelial Regulation by Exogenous Annexin A1 in Inflammatory Response and BBB Integrity Following Traumatic Brain Injury

期刊

FRONTIERS IN NEUROSCIENCE
卷 15, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fnins.2021.627110

关键词

annexin A1; blood– brain barrier; inflammation; RhoA; traumatic brain injury

资金

  1. National Natural Science Foundation of China [81571159]
  2. National Natural Science Foundation for Youth of China [81601072]

向作者/读者索取更多资源

The study showed that exogenous rANXA1 can improve BBB disruption and inflammatory response, leading to better functional outcomes following traumatic brain injury.
Background and Target Following brain trauma, blood-brain barrier (BBB) disruption and inflammatory response are critical pathological steps contributing to secondary injury, leading to high mortality and morbidity. Both pathologies are closely associated with endothelial remodeling. In the present study, we concentrated on annexin A1 (ANXA1) as a novel regulator of endothelial function after traumatic brain injury. Methods After establishing controlled cortical impact (CCI) model in male mice, human recombinant ANXA1 (rANXA1) was administered intravenously, followed by assessments of BBB integrity, brain edema, inflammatory response, and neurological deficits. Result Animals treated with rANXA1 (1 mu g/kg) at 1 h after CCI exhibited optimal BBB protection including alleviated BBB disruption and brain edema, as well as endothelial junction proteins loss. The infiltrated neutrophils and inflammatory cytokines were suppressed by rANXA1, consistent with decreased adhesive and transmigrating molecules from isolated microvessels. Moreover, rANXA1 attenuated the neurological deficits induced by CCI. We further found that the Ras homolog gene family member A (RhoA) inhibition has similar effect as rANXA1 in ameliorating brain injuries after CCI, whereas rANXA1 suppressed CCI-induced RhoA activation. Conclusion Our findings suggest that the endothelial remodeling by exogenous rANXA1 corrects BBB disruption and inflammatory response through RhoA inhibition, hence improving functional outcomes in CCI mice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据