4.8 Review

Metal-organic frameworks for energy conversion and water harvesting: A bridge between thermal engineering and material science

期刊

NANO ENERGY
卷 84, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2021.105946

关键词

Metal-organic frameworks; Energy conversion; Water harvesting; Thermal engineering; Material science

资金

  1. Key Program of National Natural Science Foundation of China [51336004]
  2. Foundation for Innovative Research Groups of the National Natural Science Foundation of China [51521004]
  3. Russian Foundation for Basic Research [18-29-04033, 18-58-80047]

向作者/读者索取更多资源

Adsorption technologies for Heat Conversion (AHC) and Water Harvesting (AWH) have great potential for energy management, but challenges such as low hydrothermal stability of MOFs need to be addressed through interdisciplinary research between Applied Thermal Engineering (ATE) and Materials Science (MS) and close collaboration.
Adsorption technologies for Heat Conversion (AHC) and Water Harvesting (AWH) hold great potential for energy management because they can utilize renewable energy or low-grade heat resources. A keystone for the successful implementation of these technologies is the properties of the adsorbent. Metal-organic frameworks (MOFs) show tremendous promise for these applications, owing to their high adsorption capacity and the possibility of target-specific design. However, there are several challenges to be solved, namely, low hydrothermal stability of MOFs, high cost, and complicated synthesis. The further progress of these technologies depends on the inter-disciplinary research in Applied Thermal Engineering (ATE) and Materials Science (MS) and close collaboration between these two scientific societies is required. In this review, we try to bridge the gap between ATE and MS scientists. To this purpose, the principles of AHC and AWH are described, the specific features of adsorbents needed for AHC and AWH are defined, and promising MOFs are considered. MOFs fabrication strategies and long-term reliability are viewed. Finally, we provide some perspectives on advanced MOFs promising for continuously-operating and scalable AHC and AWH systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据