4.6 Review

From aqueous Zn-ion battery to Zn-MnO2 flow battery: A brief story

期刊

JOURNAL OF ENERGY CHEMISTRY
卷 54, 期 -, 页码 194-201

出版社

ELSEVIER
DOI: 10.1016/j.jechem.2020.05.056

关键词

Aqueous zinc-ion battery; Deposition/dissolution; Electrolytic battery; Zn-MnO2 flow battery

资金

  1. West Light Foundation of The Chinese Academy of Sciences [XAB2019AW09]
  2. Singapore Ministry of Education [RG 10/18, RG 157/19]

向作者/读者索取更多资源

AZIB is an attractive technology due to its low cost, high safety, and eco-friendliness. Recent studies have shown significant performance enhancement through revamping of the electrochemistry and redesigning of the electrolyte and interface. The Zn-MnO2 electrolytic mechanism shows great promise for large-scale static energy storage.
Aqueous Zn-ion battery (AZIB) has become an attractive technology because of its unique features of low cost, high safety and the eco-friendliness. MnO2 is the model cathode material for AZIB since the first report on reversible Zn-MnO2 battery, but recent studies have unveiled different charge storage mechanisms. Due to revamping of the electrochemistry and redesigning of the electrolyte and interface, there is tremendous performance enhancement in AZIB. This mini Review will first give a brief introduction of ZIB, including fundamentals of materials and components, and the progress in recent years. Then, a general classification of working mechanisms related to MnO2 in neutral and mildly acidic electrolyte is elaborated. Our focus is put on the recent blossoming Zn-MnO2 electrolytic mechanism, which has given birth to the Zn-MnO2 redox flow batteries that are highly promising for large-scale static energy storage. (C) 2020 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据