4.7 Article

Unraveling the Strategies Used by the Underexploited Amaranth Species to Confront Salt Stress: Similarities and Differences With Quinoa Species

期刊

FRONTIERS IN PLANT SCIENCE
卷 12, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2021.604481

关键词

osmotic stress; ionic stress; Na+ homeostasis; K+ homeostasis; Na+ transporter genes; seed yield

资金

  1. Spanish Ministry of Science and Innovation (MICINN, Spain) [RYC2018-023956-I02019]
  2. Observatory of Agroecological Innovation to face Climate Change - European Fund for Regional Development (ERDF) [0161.2018.28.2017.00.B9]
  3. Environment of the Government of the Region of Murcia (Murcia, Spain)
  4. Spanish Ministry of Education from the National Programme for Training of University Ph.D. Students [FPU17/02019]

向作者/读者索取更多资源

The study revealed significant differences in salt tolerance, Na+ distribution, and expression of main genes involved in Na+ homeostasis between amaranth and quinoa when facing salinity stress.
Yield losses due to cultivation in saline soils is a common problem all over the world as most crop plants are glycophytes and, hence, susceptible to salt stress. The use of halophytic crops could be an interesting alternative to cope with this issue. The Amaranthaceae family comprises by far the highest proportion of salt-tolerant halophytic species. Amaranth and quinoa belong to this family, and their seeds used as pseudo-cereal grains have received much attention in recent years because of their exceptional nutritional value. While advances in the knowledge of salt tolerance mechanisms of quinoa have been remarkable in recent years, much less attention was received by amaranth, despite evidences pointing to amaranth as a promising species to be grown under salinity. In order to advance in the understanding of strategies used by amaranth to confront salt stress, we studied the comparative responses of amaranth and quinoa to salinity (100 mM NaCl) at the physiological, anatomical, and molecular levels. Amaranth was able to exhibit salt tolerance throughout its life cycle, since grain production was not affected by the saline conditions applied. The high salt tolerance of amaranth is associated with a low basal stomatal conductance due to a low number of stomata (stomatal density) and degree of stomata aperture (in adaxial surface) of leaves, which contributes to avoid leaf water loss under salt stress in a more efficient way than in quinoa. With respect to Na+ homeostasis, amaranth showed a pattern of Na+ distribution throughout the plant similar to glycophytes, with the highest accumulation found in the roots, followed by the stem and the lowest one detected in the leaves. Contrarily, quinoa exhibited a Na+ includer character with the highest accumulation detected in the shoots. Expression levels of main genes involved in Na+ homeostasis (SOS1, HKT1s, and NHX1) showed different patterns between amaranth and quinoa, with a marked higher basal expression in amaranth roots. These results highlight the important differences in the physiological and molecular responses of amaranth and quinoa when confronted with salinity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据