4.7 Review

Plant Hormone-Mediated Regulation of Heat Tolerance in Response to Global Climate Change

期刊

FRONTIERS IN PLANT SCIENCE
卷 11, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2020.627969

关键词

heat stress; phytohormone; heat response; heat tolerance; signal transduction

资金

  1. National Natural Science Foundation of China [31901345]
  2. Natural Science Foundation of Hunan [2020JJ5970]
  3. Training Program for Excellent Young Innovators of Changsha [kq2009016]

向作者/读者索取更多资源

Agriculture is heavily reliant on climate, making it vulnerable to climate change. High temperatures can lead to heat stress in plants, but plants have adaptive mechanisms involving plant hormones to cope with it.
Agriculture is largely dependent on climate and is highly vulnerable to climate change. The global mean surface temperatures are increasing due to global climate change. Temperature beyond the physiological optimum for growth induces heat stress in plants causing detrimental and irreversible damage to plant development, growth, as well as productivity. Plants have evolved adaptive mechanisms in response to heat stress. The classical plant hormones, such as auxin, abscisic acid (ABA), brassinosteroids (BRs), cytokinin (CK), salicylic acid (SA), jasmonate (JA), and ethylene (ET), integrate environmental stimuli and endogenous signals to regulate plant defensive response to various abiotic stresses, including heat. Exogenous applications of those hormones prior or parallel to heat stress render plants more thermotolerant. In this review, we summarized the recent progress and current understanding of the roles of those phytohormones in defending plants against heat stress and the underlying signal transduction pathways. We also discussed the implication of the basic knowledge of hormone-regulated plant heat responsive mechanism to develop heat-resilient plants as an effective and efficient way to cope with global warming.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据