4.7 Article

Evaluation of in situ simulated dredging to reduce internal nitrogen flux across the sediment-water interface in Lake Taihu, China

期刊

ENVIRONMENTAL POLLUTION
卷 214, 期 -, 页码 866-877

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2016.03.062

关键词

Sediment dredging; Nitrogen; Regeneration; Release flux; Sediment-water interface

资金

  1. research projects of the Major State Water Pollution Control and Treatment Technique Programs of China [2013ZX07113001, 2012ZX07101010]
  2. National Natural Science Foundation of China [41171367, 41371457]

向作者/读者索取更多资源

Sediment dredging is considered an effective restoration method to reduce internal loading of nitrogen (N) and phosphorus (P) in eutrophic lakes. However, the effect of dredging on N release from sediments to overlying water is not well understood. In this study, N exchange and regeneration across the sediment-water interface (SWI) were investigated based on a one-year simulated dredging study in Lake Taihu, China. The results showed low concentrations of inorganic N in pore water with low mobilization from the sediments after dredging. The calculated fluxes of NO3--N from post-dredged sediments to overlying water significantly increased by 58% (p < 0.01), while those of NH4+-N dramatically decreased by 78.2% after dredging (p < 0.01). N fractionation tests demonstrated that the contents and lability of N generally declined in post-dredged sediments. Further high-throughput sequencing analysis indicated that relative abundance of the bacterial communities decreased, notably by 30% (compared with undredged sediments). The estimated abundance of Nitrospira enhanced, although the relative abundance of Thiobacillus, Sterolibacterium, Denitratisoma, Hyphomicrobium, Anaeromyxobacter and Caldithrix generally declined after dredging. Therefore, dredging reduced N mobilization from the sediments, which primarily due to decreases in N mobility, in organic matter (OM) mineralization potential and in the bacterial abundance of post-dredged sediments. Overall, to minimize internal N pollution, dredging is capable of effectively reducing N release from sediments. In addition, the negative side effect of dredging on removal of NO3--N and NO2--N from aquatic ecosystems should be paid much more attention in future. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据