4.6 Article

Antimicrobial Synergy of Silver-Platinum Nanohybrids With Antibiotics

期刊

FRONTIERS IN MICROBIOLOGY
卷 11, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmicb.2020.610968

关键词

biogenic synthesis; silver-platinum nanohybrids; characterization; antimicrobial synergy; antibiofilm

资金

  1. Department of Biotechnology (DBT), Ministry of Science and Technology, Government of India [BT/IN/IndoUS/Foldscope/39/2015]
  2. Council of Scientific and Industrial Research (CSIR), New Delhi, India
  3. CSIR, New Delhi, India [MLP101226]
  4. School of Science, RK University, Rajkot, India

向作者/读者索取更多资源

The study demonstrates the antimicrobial and antibiofilm properties of silver-platinum nanohybrids (AgPtNHs) against various bacteria. These nanohybrids exhibit synergistic effects with antibiotics and significantly inhibit bacterial biofilm formation, suggesting a promising strategy for treating bacterial infections.
Various bacterial pathogens are responsible for nosocomial infections resulting in critical pathophysiological conditions, mortality, and morbidity. Most of the bacterial infections are associated with biofilm formation, which is resistant to the available antimicrobial drugs. As a result, novel bactericidal agents need to be fabricated, which can effectively combat the biofilm-associated bacterial infections. Herein, for the first time we report the antimicrobial and antibiofilm properties of silver-platinum nanohybrids (AgPtNHs), silver nanoparticles (AgNPs), and platinum nanoparticles (PtNPs) against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The AgPtNHs were synthesized by a green route using Dioscorea bulbifera tuber extract at 100 degrees C for 5 h. The AgPtNHs ranged in size from 20 to 80 nm, with an average of similar to 59 nm. AgNPs, PtNPs, and AgPtNHs showed a zeta potential of -14.46, -1.09, and -11.39 mV, respectively. High antimicrobial activity was observed against P. aeruginosa and S. aureus and AgPtNHs exhibited potent antimicrobial synergy in combination with antibiotics such as streptomycin, rifampicin, chloramphenicol, novobiocin, and ampicillin up to variable degrees. Interestingly, AgPtNHs could inhibit bacterial biofilm formation significantly. Hence, co-administration of AgPtNHs and antibiotics may serve as a powerful strategy to treat bacterial infections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据