4.6 Article

Non-Volatile Reconfigurable Integrated Photonics Enabled by Broadband Low-Loss Phase Change Material

期刊

ADVANCED OPTICAL MATERIALS
卷 9, 期 9, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adom.202002049

关键词

integrated photonics; phase change materials; reconfigurable optics; silicon photonics

资金

  1. National Science Foundation [NSF-1640986, NSF-2003509, NNCI-1542101, 1337840, 0335765]
  2. ONR-YIP Award
  3. National Institutes of Health
  4. Molecular Engineering & Sciences Institute
  5. Washington Research Foundation
  6. M. J. Murdock Charitable Trust
  7. Altatech
  8. ClassOne Technology
  9. Google
  10. GCE Market
  11. SPTS

向作者/读者索取更多资源

This study experimentally demonstrated the strong optical phase modulation and low optical loss of Sb2S3 at wavelengths of 750 nm and 1550 nm, showcasing the thermal stability of the Sb2S3-Si hybrid platform and an electrically tunable Sb2S3 integrated non-volatile microring switch with a high-contrast transmission state over 30 dB.
Phase change materials (PCMs) have long been used as a storage medium in rewritable compact disk and later in random access memory. In recent years, integration of PCMs with nanophotonic structures has introduced a new paradigm for non-volatile reconfigurable optics. However, the high loss of the archetypal PCM Ge2Sb2Te5 in both visible and telecommunication wavelengths has fundamentally limited its applications. Sb2S3 has recently emerged as a wide-bandgap PCM with transparency windows ranging from 610 nm to near-IR. In this paper, the strong optical phase modulation and low optical loss of Sb2S3 are experimentally demonstrated for the first time in integrated photonic platforms at both 750 and 1550 nm. As opposed to silicon, the thermo-optic coefficient of Sb2S3 is shown to be negative, making the Sb2S3-Si hybrid platform less sensitive to thermal fluctuation. Finally, a Sb2S3 integrated non-volatile microring switch is demonstrated which can be tuned electrically between a high and low transmission state with a contrast over 30 dB. This work experimentally verifies prominent phase modification and low loss of Sb2S3 in wavelength ranges relevant for both solid-state quantum emitter and telecommunication, enabling potential applications such as optical field programmable gate array, post-fabrication trimming, and large-scale integrated quantum photonic network.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据