4.7 Article

Hyperspectral Monitoring of Non-Native Tropical Grasses over Phenological Seasons

期刊

REMOTE SENSING
卷 13, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/rs13040738

关键词

reflectance spectroscopy; phenological sampling; tropical savanna; non-native grasses; monitoring; drones; continuum removal

向作者/读者索取更多资源

The study used miniaturisation of hyperspectral sensors on drones to monitor non-native grass species, revealing subtle spectral differences that can be used to distinguish between species. The late dry season and end of the wet season provided the best timeframe for obtaining spectral data on non-native grass species.
The miniaturisation of hyperspectral sensors for use on drones has provided an opportunity to obtain hyper temporal data that may be used to identify and monitor non-native grass species. However, a good understanding of variation in spectra for species over time is required to target such data collections. Five taxological and morphologically similar non-native grass species were hyper spectrally characterised from multitemporal spectra (17 samples over 14 months) over phenological seasons to determine their temporal spectral response. The grasses were sampled from maintained plots of homogenous non-native grass cover. A robust in situ standardised sampling method using a non-imaging field spectrometer measuring reflectance across the 350-2500 nm wavelength range was used to obtain reliable spectral replicates both within and between plots. The visible-near infrared (VNIR) to shortwave infrared (SWIR) and continuum removed spectra were utilised. The spectra were then resampled to the VNIR only range to simulate the spectral response from more affordable VNIR only hyperspectral scanners suitable to be mounted on drones. We found that species were separable compared to similar but different species. The spectral patterns were similar over time, but the spectral shape and absorption features differed between species, indicating these subtle characteristics could be used to distinguish between species. It was the late dry season and the end of the wet season that provided maximum separability of the non-native grass species sampled. Overall the VNIR-SWIR results highlighted more dissimilarity for unlike species when compared to the VNIR results alone. The SWIR is useful for discriminating species, particularly around water absorption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据