4.7 Article

Reinforced Universal Adhesive by Ribose Crosslinker: A Novel Strategy in Adhesive Dentistry

期刊

POLYMERS
卷 13, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/polym13050704

关键词

crosslinking; dentin; hybrid layer; ribose; universal adhesives

资金

  1. IMU [390/2017, FRGS/1/2020/SKK0/IMU/02/10]

向作者/读者索取更多资源

The study aimed to investigate the effect of ribose (RB) on demineralized resin-dentin specimens. Incorporating 1% or 2% RB in the adhesive showed improved wettability, protease inhibition, and stability of demineralized dentin substrates. A higher RB concentration was associated with better outcomes in terms of bond strength and protease inhibition.
Enzymatic biodegradation of demineralized collagen fibrils could lead to the reduction of resin-dentin bond strength. Therefore, methods that provide protection to collagen fibrils appear to be a pragmatic solution to improve bond strength. Thus, the study's aim was to investigate the effect of ribose (RB) on demineralized resin-dentin specimens in a modified universal adhesive. Dentin specimens were obtained, standardized and then bonded in vitro with a commercial multi-mode adhesive modified with 0, 0.5%, 1%, and 2% RB, restored with resin composite, and tested for micro-tensile bond strength (mu TBS) after storage for 24 h in artificial saliva. Scanning electron microscopy (SEM) was performed to analyze resin-dentin interface. Contact angles were analyzed using a contact angle analyzer. Depth of penetration of adhesives and nanoleakage were assessed using micro-Raman spectroscopy and silver tracing. Molecular docking studies were carried out using Schrodinger small-molecule drug discovery suite 2019-4. Matrix metalloproteinases-2 (MMP-2) and cathepsin-K activities in RB-treated specimens were quantified using enzyme-linked immunosorbent assay (ELISA). The significance level was set at alpha = 0.05 for all statistical analyses. Incorporation of RB at 1% or 2% is of significant potential (p < 0.05) as it can be associated with improved wettability on dentin surfaces (0.5% had the lowest contact angle) as well as appreciable hybrid layer quality, and higher resin penetration. Improvement of the adhesive bond strength was shown when adding RB at 1% concentration to universal adhesive (p < 0.05). Modified adhesive increased the resistance of collagen degradation by inhibiting MMP-2 and cathepsin-K. A higher RB concentration was associated with improved results (p < 0.01). D-ribose showed favorable negative binding to collagen. In conclusion, universal adhesive using 1% or 2% RB helped in maintaining dentin collagen scaffold and proved to be successful in improving wettability, protease inhibition, and stability of demineralized dentin substrates. A more favorable substrate is created which, in turn, leads to a more stable dentin-adhesive bond. This could lead to more advantageous outcomes in a clinical scenario where a stable bond may result in longevity of the dental restoration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据