4.7 Article

N-Doped Graphene-Decorated NiCo Alloy Coupled with Mesoporous NiCoMoO Nano-sheet Heterojunction for Enhanced Water Electrolysis Activity at High Current Density

期刊

NANO-MICRO LETTERS
卷 13, 期 1, 页码 -

出版社

SHANGHAI JIAO TONG UNIV PRESS
DOI: 10.1007/s40820-021-00607-5

关键词

N-doped graphene-decorated NiCo alloy; Catalyst; Mesoporous nano-sheet; Water electrolysis; High current density

资金

  1. National Natural Science Foundation of China [21872040]
  2. Hundred Talents Program of Guangxi Universities
  3. Excellent Scholars and Innovation Team of Guangxi Universities

向作者/读者索取更多资源

This study successfully prepared a bifunctional catalyst composed of N-doped graphene-decorated NiCo alloy and mesoporous NiCoMoO nano-sheet, showing outstanding activity and stability for water electrolysis at high current density, indicating potential for industrial application.
Developing highly effective and stable non-noble metal-based bifunctional catalyst working at high current density is an urgent issue for water electrolysis (WE). Herein, we prepare the N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet grown on 3D nickel foam (NiCo@C-NiCoMoO/NF) for water splitting. NiCo@C-NiCoMoO/NF exhibits outstanding activity with low overpotentials for hydrogen and oxygen evolution reaction (HER: 39/266 mV; OER: 260/390 mV) at +/- 10 and +/- 1000 mA cm(-2). More importantly, in 6.0 M KOH solution at 60 degrees C for WE, it only requires 1.90 V to reach 1000 mA cm(-2) and shows excellent stability for 43 h, exhibiting the potential for actual application. The good performance can be assigned to N-doped graphene-decorated NiCo alloy and mesoporous NiCoMoO nano-sheet, which not only increase the intrinsic activity and expose abundant catalytic activity sites, but also enhance its chemical and mechanical stability. This work thus could provide a promising material for industrial hydrogen production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据