4.7 Article

Deep End-to-End One-Class Classifier

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNNLS.2020.2979049

关键词

Generative adversarial network (GAN); one-class classification (OCC); video anomaly detection

向作者/读者索取更多资源

By using an adversarial training approach to detect out-of-distribution samples in an end-to-end trainable deep model, the proposed method successfully learns the underlying distribution of the target class and outperforms other approaches.
One-class classification (OCC) poses as an essential component in many machine learning and computer vision applications, including novelty, anomaly, and outlier detection systems. With a known definition for a target or normal set of data, one-class classifiers can determine if any given new sample spans within the distribution of the target class. Solving for this task in a general setting is particularly very challenging, due to the high diversity of samples from the target class and the absence of any supervising signal over the novelty (nontarget) concept, which makes designing end-to-end models unattainable. In this article, we propose an adversarial training approach to detect out-of-distribution samples in an end-to-end trainable deep model. To this end, we jointly train two deep neural networks, R and D. The latter plays as the discriminator while the former, during training, helps D characterize a probability distribution for the target class by creating adversarial examples and, during testing, collaborates with it to detect novelties. Using our OCC, we first test outlier detection on two image data sets, Modified National Institute of Standards and Technology (MNIST) and Caltech-256. Then, several experiments for video anomaly detection are performed on University of Minnesota (UMN) and University of California, San Diego (UCSD) data sets. Our proposed method can successfully learn the target class underlying distribution and outperforms other approaches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据