4.7 Article

SSVEP phase synchronies and propagation during repetitive visual stimulation at high frequencies

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-83795-9

关键词

-

资金

  1. Philips Research Europe

向作者/读者索取更多资源

Through studying the dynamic properties of EEG in 32 subjects, we found that SSVEPs in the gamma frequency band originate in the primary visual cortex, Brodmann areas 17, 18, and 19, with minor contributions from central and frontal sites. Additionally, our research showed a progressive phase shift of SSVEPs over the cortex, with higher input frequencies leading to faster propagation speeds.
Steady-state visual evoked potentials (SSVEPs), the brain response to visual flicker stimulation, have proven beneficial in both research and clinical applications. Despite the practical advantages of stimulation at high frequencies in terms of visual comfort and safety, high frequency-SSVEPs have not received enough attention and little is known about the mechanisms behind their generation and propagation in time and space. In this study, we investigated the origin and propagation of SSVEPs in the gamma frequency band (40-60 Hz) by studying the dynamic properties of EEG in 32 subjects. Using low-resolution brain electromagnetic tomography (sLORETA) we identified the cortical sources involved in SSVEP generation in that frequency range to be in the primary visual cortex, Brodmann areas 17, 18 and 19 with minor contribution from sources in central and frontal sites. We investigated the SSVEP propagation as measured on the scalp in the framework of the existing theories regarding the neurophysiological mechanism through which the SSVEP spreads through the cortex. We found a progressive phase shift from posterior parieto-occipital sites over the cortex with a phase velocity of approx. 8-14 m/s and wavelength of about 21 and 24 cm. The SSVEP spatial properties appear sensitive to input frequency with higher stimulation frequencies showing a faster propagation speed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据