4.7 Article

Design of epidermal growth factor immobilization on 3D biocompatible scaffolds to promote tissue repair and regeneration

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41598-021-81905-1

关键词

-

资金

  1. Master Nanomed (Erasmus Mundus Joint Master Degrees, University of Patras, University of Angers)
  2. Fondo Ricerca Giovani (University of Pavia, Italy)

向作者/读者索取更多资源

This study aimed to develop bioconjugates based on hEGF for tissue engineering applications, with immobilized EGF showing significantly high cell proliferative activity at 50 and 100 ng/mL. The results suggest that EGF immobilized on activated-agarose carriers has potential for treating skin-related disorders such as burns.
Exogenous application of human epidermal growth factor (hEGF) stimulates epidermal wound healing. The aim of this study was to develop bioconjugates based on hEGF mimicking the protein in its native state and thus suitable for tissue engineering applications, in particular for treating skin-related disorders as burns. Ribonuclease A (RNase A) was used to investigate a number of different activated-agarose carriers: cyanogen bromide (CNBr)-activated-agarose and glyoxyl-agarose showed to preserve the appropriate orientation of the protein for receptor binding. EGF was immobilized on these carriers and immobilization yield was evaluated (100% and 12%, respectively). A peptide mapping of unbound protein regions was carried out by LC-MS to take evidence of the residues involved in the immobilization and, consequently, the flexibility and surface accessibility of immobilized EGF. To assess cell proliferative activities, 10, 25, 50, and 100 ng/mL of each immobilized EGF sample were seeded on fibroblast cells and incubated for 24, 48 and 72 h. The immobilized growth factor showed significantly high cell proliferative activity at 50 and 100 ng/mL compared to control and soluble EGF. Although both of the immobilized samples show dose-dependency when seeded with high number of fibroblast cells, CNBr-agarose-EGF showed a significantly high activity at 100 ng/mL and 72 h incubation, compared to glyoxyl-agarose-EGF.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据