4.7 Article

Intensification of CO2 absorption using MDEA-based nanofluid in a hollow fibre membrane contactor

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41598-021-82304-2

关键词

-

资金

  1. Government of the Russian Federation [A03.21.0011]
  2. Ministry of Science and Higher Education of the Russian Federation [FENU-2020-0019]

向作者/读者索取更多资源

The study demonstrates that using nanofluid absorbent can enhance CO2 capture rate, and the CO2 capture efficiency increases with higher MDEA content, liquid flow rate, and membrane porosity, while increased gas velocity and membrane tortuosity lead to reduced CO2 capture efficiency.
Porous hollow fibres made of polyvinylidene fluoride were employed as membrane contactor for carbon dioxide (CO2) absorption in a gas-liquid mode with methyldiethanolamine (MDEA) based nanofluid absorbent. Both theoretical and experimental works were carried out in which a mechanistic model was developed that considers the mass transfer of components in all subdomains of the contactor module. Also, the model considers convectional mass transfer in shell and tube subdomains with the chemical reaction as well as Grazing and Brownian motion of nanoparticles effects. The predicted outputs of the developed model and simulations showed that the dispersion of CNT nanoparticles to MDEA-based solvent improves CO2 capture percentage compared to the pure solvent. In addition, the efficiency of CO2 capture for MDEA-based nanofluid was increased with rising MDEA content, liquid flow rate and membrane porosity. On the other hand, the enhancement of gas velocity and the membrane tortuosity led to reduced CO2 capture efficiency in the module. Moreover, it was revealed that the CNT nanoparticles effect on CO2 removal is higher in the presence of lower MDEA concentration (5%) in the solvent. The model was validated by comparing with the experimental data, and great agreement was obtained.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据