4.7 Article

Massively parallel sequencing of 25 autosomal STRs including SE33 in four population groups for forensic applications

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41598-021-82814-z

关键词

-

资金

  1. Bio & Medical Technology Development Program of the National Research Foundation (NRF) - Ministry of Science and ICT [NRF-2014M3A9E1069989]
  2. National Research Foundation of Korea [2014M3A9E1069989] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

This study utilized MPS technology to analyze 25 STRs from 350 samples of four populations, revealing that the sequence-based MPS method showed a higher number of alleles and unique alleles in SE33 compared to the length-based CE method.
The introduction of massively parallel sequencing (MPS) in forensic investigation enables sequence-based large-scale multiplexing beyond size-based analysis using capillary electrophoresis (CE). For the practical application of MPS to forensic casework, many population studies have provided sequence data for autosomal short tandem repeats (STRs). However, SE33, a highly polymorphic STR marker, has little sequence-based data because of difficulties in analysis. In this study, 25 autosomal STRs were analyzed, including SE33, using an in-house MPS panel for 350 samples from four populations (African-American, Caucasian, Hispanic, and Korean). The barcoded MPS library was generated using a two-step PCR method and sequenced using a MiSeq System. As a result, 99.88% genotype concordance was obtained between length- and sequence-based analyses. In SE33, the most discordances (eight samples, 0.08%) were observed because of the 4 bp deletion between the CE and MPS primer binding sites. Compared with the length-based CE method, the number of alleles increased from 332 to 725 (2.18-fold) for 25 autosomal STRs in the sequence-based MPS method. Notably, additional 129 unique alleles, a 4.15-fold increase, were detected in SE33 by identifying sequence variations. This population data set provides sequence variations and sequence-based allele frequencies for 25 autosomal STRs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据