4.7 Article

Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41598-021-82817-w

关键词

-

向作者/读者索取更多资源

The study focused on optimizing the performance of a photoexcited lead-free perovskite solar cell device through simulation, determining an appropriate absorber layer thickness and treatment method to achieve a higher power conversion efficiency.
Photoexcited lead-free perovskite CH3NH3SnI3 based solar cell device was simulated using a solar cell capacitance simulator. It was modeled to investigate its output characteristics under AM 1.5G illumination. Simulation efforts are focused on the thickness, acceptor concentration and defect density of absorber layer on photovoltaic properties of solar cell device. In addition, the impact of various metal contact work function was also investigated. The simulation results indicate that an absorber thickness of 500 nm is appropriate for a good photovoltaic cell. Oxidation of Sn2+ into Sn4+ was considered and it is found that the reduction of acceptor concentration of absorber layer significantly improves the device performance. Further, optimizing the defect density (10(14) cm(-3)) of the perovskite absorber layer, encouraging results of the J(sc) of 40.14 mA/cm(2), V-oc of 0.93 V, FF of 75.78% and PCE of 28.39% were achieved. Finally, an anode material with a high work function is necessary to get the device's better performance. The high-power conversion efficiency opens a new avenue for attaining clean energy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据