4.7 Article

Targeted therapy of human leukemia xenografts in immunodeficient zebrafish

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41598-021-85141-5

关键词

-

资金

  1. University of North Carolina System from NIH/NCI [U54CA156735]
  2. University of North Carolina System from NIH/NIMHD [U54MD012392]

向作者/读者索取更多资源

Personalized medicine offers potential for optimization of treatment regimens and drug efficacy. The use of patient-derived xenografts (pdx) in immunodeficient animal models, such as SCID mice and zebrafish, allows for the analysis of drug effects on individual tumors. This study demonstrated the in vivo efficacy of several drug compounds and the potential for large-scale drug screening against specific malignancies using zebrafish models.
Personalized medicine holds tremendous promise for improving safety and efficacy of drug therapies by optimizing treatment regimens. Rapidly developed patient-derived xenografts (pdx) could be a helpful tool for analyzing the effect of drugs against an individual's tumor by growing the tumor in an immunodeficient animal. Severe combined immunodeficiency (SCID) mice enable efficient in vivo expansion of vital tumor cells and generation of personalized xenografts. However, they are not amenable to large-scale rapid screening, which is critical in identifying new compounds from large compound libraries. The development of a zebrafish model suitable for pdx could facilitate large-scale screening of drugs targeted against specific malignancies. Here, we describe a novel strategy for establishing a zebrafish model for drug testing in leukemia xenografts. We used chronic myelogenous leukemia and acute myeloid leukemia for xenotransplantation into SCID zebrafish to evaluate drug screening protocols. We showed the in vivo efficacy of the ABL inhibitor imatinib, MEK inhibitor U0126, cytarabine, azacitidine and arsenic trioxide. We performed corresponding in vitro studies, demonstrating that combination of MEK- and FLT3-inhibitors exhibit an enhanced effect in vitro. We further evaluated the feasibility of zebrafish for transplantation of primary human hematopoietic cells that can survive at 15 day-post-fertilization. Our results provide critical insights to guide development of high-throughput platforms for evaluating leukemia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据