4.8 Article

Modulating Nanoinhomogeneity at Electrode-Solid Electrolyte Interfaces for Dendrite-Proof Solid-State Batteries and Long-Life Memristors

期刊

ADVANCED ENERGY MATERIALS
卷 11, 期 16, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202003811

关键词

conductive‐ atomic force microscope; critical current density; lithium filament; memristor; solid‐ state batteries

资金

  1. Basic Research Program of Shenzhen [JCYJ20190812161409163]
  2. Basic and Applied Basic Research Program of Guangdong Province [2019A1515110531]
  3. SIAT Innovation Program for Excellent Young Researchers

向作者/读者索取更多资源

The issue of dendrite penetration in ceramic lithium conductors for solid-state batteries was investigated, and an in situ nanoscopic electrochemical characterization technique was developed to reveal local dendrite growth kinetics. By designing an ionic-conductive polymeric homogenizing layer, high critical current density and low interfacial resistance were achieved, providing opportunities for the application of solid electrolytes.
Dendrite penetration in ceramic lithium conductors severely constrains the development of solid-state batteries (SSBs) while its nanoscale origin remains unelucidated. An in situ nanoscopic electrochemical characterization technique is developed based on conductive-atomic force microscopy (c-AFM) to reveal the local dendrite growth kinetics. Using Li7La3Zr2O12 (LLZO) as a model system, significant local inhomogeneity is observed with a hundredfold decrease in the dendrite triggering bias at grain boundaries compared with that at grain interiors. The origin of the local weakening is assigned to the nanoscale variation of elastic modulus and lithium flux detouring. An ionic-conductive polymeric homogenizing layer is designed which achieves a high critical current density of 1.8 mA cm(-2) and a low interfacial resistance of 14 omega cm(2). Practical SSBs based on LiFePO4 cathodes can be stably cycled over 300 times. Beyond this, highly reversible electrochemical dendrite healing in LLZO is discovered using the c-AFM electrode, based on which a model memristor with a high on/off ratio of approximate to 10(5) is demonstrated for >200 cycles. This work not only provides a novel tool to investigate and design interfaces in SSBs but also offers opportunities for solid electrolytes beyond energy applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据