4.8 Article

Digital proximity tracing on empirical contact networks for pandemic control

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-21809-w

关键词

-

资金

  1. ANR [ANR-19-CE46-0008-01]
  2. Lagrange Project of ISI Foundation - CRT Foundation
  3. EU [SC1-PHE-CORONAVIRUS-2020, SC1-PHE-CORONAVIRUS-2020-2C]

向作者/读者索取更多资源

Digital contact tracing is increasingly recognized as a tool to control infectious disease outbreaks, especially during the COVID-19 pandemic. The authors present a modeling framework based on high-resolution contact data to analyze the impact of digital contact tracing apps. Results suggest that isolation and tracing can help control re-emerging outbreaks under specific conditions.
Digital contact tracing is a relevant tool to control infectious disease outbreaks, including the COVID-19 epidemic. Early work evaluating digital contact tracing omitted important features and heterogeneities of real-world contact patterns influencing contagion dynamics. We fill this gap with a modeling framework informed by empirical high-resolution contact data to analyze the impact of digital contact tracing in the COVID-19 pandemic. We investigate how well contact tracing apps, coupled with the quarantine of identified contacts, can mitigate the spread in real environments. We find that restrictive policies are more effective in containing the epidemic but come at the cost of unnecessary large-scale quarantines. Policy evaluation through their efficiency and cost results in optimized solutions which only consider contacts longer than 15-20 minutes and closer than 2-3 meters to be at risk. Our results show that isolation and tracing can help control re-emerging outbreaks when some conditions are met: (i) a reduction of the reproductive number through masks and physical distance; (ii) a low-delay isolation of infected individuals; (iii) a high compliance. Finally, we observe the inefficacy of a less privacy-preserving tracing involving second order contacts. Our results may inform digital contact tracing efforts currently being implemented across several countries worldwide. Digital contact tracing is increasingly considered as one of the tools to control infectious disease outbreaks, in particular the COVID-19 epidemic. Here, the authors present a modeling framework informed by empirical high-resolution contact data to analyze the impact of digital contact tracing apps.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据