4.8 Article

A flexible electromagnetic wave-electricity harvester

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-21103-9

关键词

-

资金

  1. Recruitment Program of Global Youth Experts, China Postdoctoral Science Foundation [KLH2021060]
  2. National Natural Science Foundation of China [11802087]
  3. Natural Science Foundation of Shandong Province [ZR2019YQ24]
  4. Qingchuang Talents Induction Program of Shandong Higher Education Institution (Research and Innovation Team of Structural-Functional Polymer Composites)

向作者/读者索取更多资源

The study introduces a hybrid Sn@C composite with a biological cell-like splitting ability that enhances the efficiency of converting electromagnetic waves into electricity and heat. This material provides a promising solution for addressing electromagnetic interference with self-powered devices.
Developing an ultimate electromagnetic (EM)-absorbing material that can not only dissipate EM energy but also convert the generated heat into electricity is highly desired but remains a significant challenge. Here, we report a hybrid Sn@C composite with a biological cell-like splitting ability to address this challenge. The composite consisting of Sn nanoparticles embedded within porous carbon would split under a cycled annealing treatment, leading to more dispersed nanoparticles with an ultrasmall size. Benefiting from an electron-transmitting but a phonon-blocking structure created by the splitting behavior, an EM wave-electricity device constructed by the optimum Sn@C composite could achieve an efficiency of EM to heat at widely used frequency region and a maximum thermoelectric figure of merit of 0.62 at 473K, as well as a constant output voltage and power under the condition of microwave radiation. This work provides a promising solution for solving EM interference with self-powered EM devices. Materials that can harvest electromagnetic (EM) waves and harness the resulting energy would have many applications. Here, the authors present a hybrid composite that produces thermoelectricity from the heating in the EM absorption under microwave radiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据