4.8 Article

Carbon emission from Western Siberian inland waters

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-21054-1

关键词

-

资金

  1. Swedish Research Council [2016-05275, 325-2014-6898]
  2. RSF [18-17-00237]
  3. Swedish Research Council [2016-05275] Funding Source: Swedish Research Council

向作者/读者索取更多资源

High-latitude regions, particularly Western Siberia, play a crucial role in the carbon cycle and climate system. Emission of carbon from inland waters, such as rivers and lakes, exceeds carbon export to the Arctic Ocean and is a major contributor to the regional carbon balance. This highlights the importance of coupled land-water studies in understanding the contemporary carbon cycle and its response to warming.
High-latitude regions play a key role in the carbon (C) cycle and climate system. An important question is the degree of mobilization and atmospheric release of vast soil C stocks, partly stored in permafrost, with amplified warming of these regions. A fraction of this C is exported to inland waters and emitted to the atmosphere, yet these losses are poorly constrained and seldom accounted for in assessments of high-latitude C balances. This is particularly relevant for Western Siberia, with its extensive peatland C stocks, which can be strongly sensitive to the ongoing changes in climate. Here we quantify C emission from inland waters, including the Ob' River (Arctic's largest watershed), across all permafrost zones of Western Siberia. We show that the inland water C emission is high (0.08-0.10 Pg C yr(-1)) and of major significance in the regional C cycle, largely exceeding (7-9 times) C export to the Arctic Ocean and reaching nearly half (35-50%) of the region's land C uptake. This important role of C emission from inland waters highlights the need for coupled land-water studies to understand the contemporary C cycle and its response to warming. Rivers and lakes are thought to be a major conduit of loss for the massive amounts of carbon locked away in high-latitude systems, but such losses are poorly constrained. Here the authors quantify carbon emissions from rivers and lakes across Western Siberia, finding that emissions are high and exceed carbon export to the Arctic Ocean.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据