4.8 Article

Rapid electrochemical detection of coronavirus SARS-CoV-2

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-21121-7

关键词

-

资金

  1. National Research Council of Thailand
  2. Research Chair Grant from the National Science and Technology Development Agency [P-15-5004]
  3. Institute of Urban Disease Control and Prevention (IUDC), Department of Disease Control, Ministry of Public Health, Thailand

向作者/读者索取更多资源

The researchers developed an ultrasensitive electrochemical biosensor based on isothermal rolling circle amplification for rapid detection of SARS-CoV-2, capable of detecting as low as 1 copy/mu L of N and S genes in clinical samples. The sensor showed a 100% concordance with qRT-PCR results in clinical sample evaluation.
Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Diagnosis of COVID-19 depends on quantitative reverse transcription PCR (qRT-PCR), which is time-consuming and requires expensive instrumentation. Here, we report an ultrasensitive electrochemical biosensor based on isothermal rolling circle amplification (RCA) for rapid detection of SARS-CoV-2. The assay involves the hybridization of the RCA amplicons with probes that were functionalized with redox active labels that are detectable by an electrochemical biosensor. The one-step sandwich hybridization assay could detect as low as 1 copy/mu L of N and S genes, in less than 2h. Sensor evaluation with 106 clinical samples, including 41 SARS-CoV-2 positive and 9 samples positive for other respiratory viruses, gave a 100% concordance result with qRT-PCR, with complete correlation between the biosensor current signals and quantitation cycle (Cq) values. In summary, this biosensor could be used as an on-site, real-time diagnostic test for COVID-19. Currently the most common method of COVID-19 diagnosis is by qRT-PCR which is slow and requires expensive instrumentation. Here the authors report an electrochemical biosensor based on isothermal rolling circle amplification for rapid detection of SARS-CoV-2 in clinical samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据